Level 20 Card 1 All times tables should be known x2-x12 Square numbers

When you multiply a whole number times itself, you get a square number. So, $1,4,9,16,25,36,49,64,81,100,121,144$, and so on, are all square numbers, (e.g. $1 \times 1=1 ; 2 \times 2=4$)

1. Make a list of square numbers up to 144 by completing this list:
$1 \times 1=1$
$2 \times 2=4$ keep going up to ...
$12 \times 12=144$

We can show a square number like this:

2^{2} is 2 "squared" or 2×2.
2. Write these numbers as "squared".
$2 \times 2=2^{2}$
$3 \times 3=3^{2}$ keep going up to 12^{2}

Index numbers

An index number is when you multiply a number by itself as many times as shown by the smaller number, e.g. $3^{3}=3 \times 3 \times 3=27$
3.Set out these index numbers the same way.
$2^{5}=$
$4^{3}=$
$5^{3}=$

4.Show these numbers as square numbers or index numbers:

$25=\square \mathrm{x} \square$
$8=\square \mathrm{x} \square \mathrm{x} \square=\square$
$27=\square \mathrm{x} \square \mathrm{x} \square=\square$

Level 20 card 2

Place value

1. Write in words: $729,264$.
2. Write in figures: nine hundred and fifty-four thousand and three.
3. Round these numbers to the nearest 10 :
a) 32,579
b) 654,922
c) 89,999
d) 26,784
4. Round these numbers to the nearest 100 :
a) 329,644
b) 23,879
c) 4,098
d) 379,009
5. Round these numbers to the nearest 1000 :
a) 267,908
b) 367,864
c) 643,863
d) 257,074
6. Round these numbers to the nearest $\frac{1}{10}$
a) 265.12
b) 896.28
c) $290,755.08$
d) $362,075.91$

Prime factors

A Prime Factor is a factor that is a prime number. In other words: any of the prime numbers that can be multiplied to give the original number. Example: The prime factors of 15 are 3 and 5 (because $3 \times 5=15$, and 3 and 5 are prime numbers).

Make a list of prime numbers between 2 and 17 . Write the prime factors of each of these. Remember that you can only use prime numbers for the factors:
a) $\square x \square=4$
b) $\square x \square=14$
c) $\square x \square=33$
d) $\square x \square=51$
e) $\square x \square=35$
f) $\square x \square=26$
g) $\square x \square=57$
h) $\square x \square=55$

Level 20 Card 3

Ascending and descending order of numbers

1. Write this set of numbers in ascending order:
42,537
47,235
$72,543 \quad 37,452$
54,723

2. Write this set of numbers in descending order:

42,537
47,235
72,543
37,452
54,723

3. Rounding Numbers

Copy the number in the line which is nearest in value to the number in bold print:
a) 5,736 $700 \quad 5,000 \quad 6,000 \quad 7,000$
b) $\mathbf{2 4 , 5 6 0} \mathbf{2 6 , 0 0 0} 23,000 \quad 25,000 \quad 24,000$
c) $384,50538,000 \quad 380,000 \quad 400,000 \quad 84,000$
d) $\mathbf{1 5 3 , 4 8 9} \mathbf{2 0 0 , 0 0 0} \mathbf{1 0 0 , 0 0 0} \mathbf{1 5 0 , 0 0 0} \mathbf{1 5 , 0 0 0}$
4. Addition in your head
a) $93,483+10=$
b) $763,201+100=$
c) $67,928+1000=$
d) $24,875+10,000=$

Level 20 Card 4

1. Write each set of numbers in ascending order.
a) $30,378 \quad 73,830 \quad 80,337 \quad 80,733 \quad 33,708$
b) $510,871 \quad 108,752 \quad 705,184 \quad 817,053 \quad 758,102$
2) Write each set of numbers in descending order.
a) $683,216 \quad 642,136 \quad 651,336 \quad 673,126 \quad 653,621$
b) $496,878 \quad 485,879 \quad 486,798 \quad 485,978 \quad 487,689$
2. Decimals
$23.3=273$ tenths. $2.73=273$ hundredths. $.273=273$ thousandths.
a) $45.2=\square$ tenths
b) $6.85=\square$ hundredths
c) $.753=\square$ thousandths
d) $1.00=\square$ hundredths

3. Inverse operations

Addition and subtraction are opposites. When you adjust one element, you just adjust the other to keep the answer the same. In your head:
a) $8+9=17$
b) $16-9=7$
$12+\square=17$
18-ロ=7
$\square+3=17$
$\square-13=7$

Multiplication and division are opposites:
c) $12 \times 5=\square$
d) $\square \div \square=\square$

Level 20 Card 5

Equivalent Fractions

Fill in the missing numbers.

Level 20 Card 6

Equivalent fractions: changing the denominator (bottom)

These fractions are really the same:
$\frac{1}{2}=\frac{2}{4}$
We multiply the bottom number (2) by 2 and we get 4 . Now we must multiply the top number (1) by 2 to get 2

Try these. Remember, whatever you multiply the bottom number by, you must do the same for the top.

$$
\begin{array}{lll}
\frac{1}{3}=\frac{3}{6} & \frac{3}{5}=\frac{3}{35} & \frac{3}{8}=\frac{}{24} \\
\frac{1}{6}=\frac{\overline{3}}{36} & \frac{1}{4}=\frac{}{36} & \frac{6}{8}=\overline{56} \\
\frac{1}{3}=\frac{10}{15} & \frac{1}{8}=\overline{56} &
\end{array}
$$

Level 20 Card 7

Equivalent Fractions: changing the denominator (bottom)

$\frac{3}{4}=\overline{8}$	$\frac{4}{6}=\frac{\overline{3}}{}$	$\frac{1}{2}=\overline{10}$
$\frac{6}{12} \cdot \frac{-}{6}$	$\frac{1}{3}=\frac{}{6}$	$\frac{1}{6} \cdot \frac{12}{12}$
$\frac{5}{10} \cdot \overline{6}$	$\frac{2}{3}=\overline{9}$	$\frac{2}{4}=\frac{-}{6}$
$\frac{1}{4}=\frac{12}{12}$	$\frac{6}{9}=\frac{-}{3}$	$\frac{2}{5} * \frac{10}{10}$
$\frac{6}{8} \cdot \frac{12}{12}$	$\frac{5}{7}=\overline{14}$	$\frac{14}{16}=\overline{8}$

Level 20 Card 7

Equivalent fractions: changing the numerator (top)
Step 1: Find out what the numerator is multiplied by. Step 2: Multiply the denominator by the same.

$$
\begin{array}{rlr}
\frac{11}{2}=\frac{33}{2} & \underline{6}=\frac{24}{36} \\
\underline{1}=\frac{5}{50} & \frac{4}{7}=\frac{16}{2} \\
\frac{39}{12} & =\frac{13}{18} & \underline{4} \\
\frac{5}{5} & =\frac{20}{12} &
\end{array}
$$

Level 20 card 9

Equations

1. Use BOMDAS (by, of, multiply, divide, add subtract)
a) $\frac{5}{8} \times 40+56 \div 7-\left(\frac{2}{3} \times 9-4\right)=\square$
b) $\frac{2}{3}$ of $33-\left(\frac{5}{6}\right.$ of 12$)=\square$
c) $12-9+11 \times 3 \times 12=\square$
d) $7-1 \times 14+7-3=\square$
e) $6+72 \div 9=\square$
f) $7^{2}+\left(\frac{1}{2}\right.$ of 32$)-27=\square$
g) $5^{3}-\left(\frac{2}{3}\right.$ of 21$)+14=\square$

2. Find the missing numbers

3. Make as many equations as you can from the numbers

5,3 and 2 . Example: $(5+3) \div 2=4$

Level 20 Card 10

Solving simple real-life problems using fractions

1. Ray bought a loaf of bread and ate $\frac{1}{4}$ of it while his friend ate $\frac{1}{3}$. What fraction of the bread did they eat altogether?
2. For breakfast one morning Mum made 10 rotis. Ram ate $2 \frac{1}{2}$, Bimla ate $1 \frac{1}{3}$, Priya ate $1 \frac{1}{4}$.
a) How much roti did the children eat?
b) How much roti was left?
3. Jone dug a rectangular garden which was $\frac{2}{3} \mathrm{~m}$ long and $\frac{1}{3} \mathrm{~m}$ wide. What was the length of the garden in cm ?
4. Karan bought a material which was $3 \frac{1}{2} \mathrm{~m}$ long. He used $2 \frac{1}{2} \mathrm{~m}$ for his shirt. How much material was left?
5. From a half watermelon Lee ate $\frac{2}{16}$ and Suzie ate $\frac{1}{4}$.
a) How much watermelon did they eat altogether?
b) How much was left?
6. A whole pizza was equally divided into 16 pieces. If Jane ate one quarter of the pizza:
a) how many pieces did she eat?
b) how much was left? (answer in fraction and pieces)
7. Vili ate three pieces of pie. If each piece is $\frac{1}{8}$ how much pie did he eat?
8. A tin of paint was $\frac{2}{3}$ litres full. Bill used $\frac{1}{2}$ of the paint to paint his table. How much was left?

Level 20 Card 11

Addition and subtraction of fractions

Set 1

1) $\frac{1}{10}+\frac{7}{10}=$
2) $\frac{1}{5}+\frac{1}{5}=$
3) $\frac{2}{9}+\frac{2}{9}=$
4) $\frac{1}{12}+\frac{2}{12}=$
5) $\frac{2}{9}+\frac{3}{9}=$
6) $\frac{6}{7}-\frac{2}{7}=$
7) $\frac{8}{11}-\frac{6}{11}=$
8) $\frac{2}{4}-\frac{1}{4}=$
9) $\frac{10}{12} \cdot \frac{8}{12}=$
10) $\frac{2}{6} \cdot \frac{1}{6}=$

Set 2

1) $\frac{1}{2}+\frac{1}{4}=$
2) $\frac{2}{3}+\frac{1}{6}=$
3) $\frac{3}{10}+\frac{2}{5}=$
4) $\frac{5}{7}+\frac{1}{14}=$
5) $\frac{3}{18}+\frac{4}{9}=$
6) $\frac{5}{6}-\frac{1}{3}=$
7) $\frac{9}{10}-\frac{1}{2}=$
8) $\frac{9}{14}-\frac{1}{7}=$
9) $\frac{9}{20}-\frac{1}{4}=$
10) $\frac{7}{8}-\frac{3}{4}=$

Level 20 Card 12

Addition of fractions

$\frac{1}{2}+\frac{2}{3}=$
2. $\frac{1}{7}+\frac{1}{5}=$
$\frac{3}{6}+\frac{1}{2}=$
4 $\frac{4}{5}+\frac{1}{4}=$
5 $\frac{7}{8}+\frac{1}{4}=$
(1) $\frac{2}{3}+\frac{1}{3}=$
7. $\frac{2}{6}+\frac{3}{6}=$
(4) $\frac{1}{5}+\frac{4}{5}=$
$\frac{2}{4}+\frac{1}{3}=$
10 $\frac{1}{4}+\frac{4}{8}=$
11 $\frac{2}{5}+\frac{1}{5}=$
12 $\frac{2}{3}+\frac{1}{5}=$
${ }^{13} \frac{2}{7}+\frac{5}{6}=$
${ }^{14} \frac{4}{6}+\frac{4}{8}=$
15. $\frac{2}{3}+\frac{1}{8}=$
15. $\frac{2}{3}+\frac{3}{6}=$
17 $\frac{3}{4}+\frac{1}{3}=$
18 $\frac{1}{3}+\frac{3}{5}=$

Level 20 Card 13

Subtraction of fractions

1) $\frac{5}{8}-\frac{7}{16}=$
2) $\frac{1}{2}-\frac{1}{4}=$
3) $\frac{1}{2}-\frac{3}{8}=$
4) $\frac{11}{16}-\frac{1}{2}=$
5) $\frac{3}{4}-\frac{9}{16}=$
6) $\frac{3}{4}-\frac{3}{8}=$
7) $\frac{1}{4}-\frac{1}{8}=$
8) $\frac{7}{8}-\frac{7}{16}=$
9) $\frac{5}{8}-\frac{1}{2}=$
10) $\frac{15}{16}-\frac{3}{4}=$

Level 20 card 14 Test All times tables should be known.

1. Write in words: 231,567
2. $8433-184=\square+1842$
3. $2^{2}=2 \times 2=4$. What is 3^{2} ?
4. Round these numbers to the nearest 1000 :
a) 267,908
b) 367,864
5. a) $\frac{2}{3}=\frac{-}{12} \quad$ b) $\frac{3}{5}=\frac{}{15}$
6. a) $\frac{7}{8}=\frac{14}{} \quad$ b) $\frac{3}{9}=\frac{12}{}$
7. a) $\frac{1}{3}$ of $30-\left(\frac{3}{4}\right.$ of 12$)=\square$
b) $12-9+11 \times 3 \times 12=\square$
8. a) $\frac{3}{10}+\frac{4}{5}=\square$
b) $\frac{1}{6}+\frac{2}{3}=\square$
9. a) $\frac{3}{4}-\frac{1}{2}=\square$
b) $\frac{5}{8}-\frac{1}{4}=\square$
10. Convert these improper fractions to mixed numbers:
a) $\frac{23}{5}$
b) $\frac{42}{8}$
11. At your birthday party you had 6 pizzas. Each pizza was divided into 8 pieces. 41 pieces were eaten. What fraction of a pizza was left?
12. Jasmine has 50 marbles in a bag. 20% of the marbles are blue. How many are blue?
