Data Analysis Notes - Transformation

DATING OF ROCKS A PRACTICAL INVESTIGATION

Are the ages of millions of years accurate when it comes to radiometric dating of rocks?
Are there any assumptions made in the dating methods?
Do different methods give similar/the same dates of the rocks?
When ages of rocks are given, are we measuring time?

Distance (m) from Granite boundary	Apparent age of rock using K-Ar dating method (m.y.)
90	70
400	450
900	500
1200	800
2000	1000
3000	1050
4000	1100

Give answers, correct to $\mathbf{3}$ significant figures unless otherwise stated.
Question 1 State the response variable and the explanatory variable (note, we are going to predict the apparent age from the distance).

Question 2 Construct a scatterplot, for distance against apparent age and hence perform scatterplot analysis

Sketch Scatterplot (Label axes with variable names and units)		
Direction (Key words: association, variable names)		
Outliers		
Form- by observation		
Form-by residual plot	Residual plot	

Strength State $r=$ \qquad This means \qquad	
Coefficient of determination State $r^{2}=$ \qquad This means \qquad \%of RV (variable name) can be explained by $E V$ (variable name)	
Least-square regression line in correct variable name Interpret \boldsymbol{a} (y intercept) Interpret b slope coefficient	
Are the reports for a, $\boldsymbol{b}, \boldsymbol{r}$ and \boldsymbol{r}^{2} reliable? Why/ Why not? (check outliers and form)	

Possible transformation and model name

Question 3 Compare the original scatterplot to the circle of transformation, state all the possible transformations.

The circle of transformations			
Possible transformations		Possible transformations	
y^{2} $\log x$ $\frac{1}{x}$		$\infty_{0}^{\circ}{ }_{00}$	$\begin{aligned} & y^{2} \\ & x^{2} \end{aligned}$
$\log y$ $\frac{1}{y}$ $\log x$ $\frac{1}{x}$			$\log y$ $\frac{1}{y}$ x^{2}

Question 4 Perform and analyse each transformation

Original data		Transformed data $-\log x$ Transformation		
Distance (m)	Apparent age of	Distance	Log (distance)	Apparent age (m.y.)
boundary	method (m.y.)	90		70
90	70	400		450
400	450	900		500
900	500	1200		800
1200	800	2000		1000
2000	1000	3000		1050
3000	1050	4000		1100
4000	1100			

Transformed scatterplot Residual plot	Transformed scatterplot and Residual plot	Interpretation of residual plot
Strength State $r=$ \qquad This means \qquad		
Coefficient of determination State $r^{2}=$ \qquad This means \qquad \% \qquad name) can be explained by $E V$ (variable name)		
Least-square regression line in correct variable name Interpret \boldsymbol{a} (y intercept) Interpret b slope coefficient		
Are the reports for a, $\boldsymbol{b}, \boldsymbol{r}$ and \boldsymbol{r}^{2} reliable? Is this model better?		

Question 5 Another method was used to determine the apparent age of the rock $(\mathrm{Rb}-\mathrm{Sr})$ and the measurements given.

Original data		Transformed data - Log x Transformation		
Distance	Apparent age of	Distance	Log (distance)	Apparent age (m.y.)
boundary	Sr method (m.y)	7		190
7	190	15		300
15	300	90		550
90	550	400		820
400	820	900		900
900	900	1200		1050
1200	1050	2000		1100
2000	1100	3000		1150
3000	1150			

Transformed scatterplot	Transformed scatterplot and Residual plot	
Residual plot		

Question 6

(a) Given that the apparent age at distance 0 m is dated at $54 \mathrm{~m} . \mathrm{y}$. comment on the accuracy of the y -intercept. (Use the data/information from question 5)
(b) Comment on the accuracy of the two different methods of dating ($\mathrm{K}-\mathrm{Ar}$ with $\mathrm{Rb}-\mathrm{Sr}$) by comparing the dates they give for the similar distances

Question 7

(a) Using your transformed equation for the K-Ar method find the apparent age at 100 m .
(b) (i) Does your result seem reasonable? Why/Why not?
(ii) Is this interpolation or extrapolation?
(c) Using your transformed equation for the $\mathrm{K}-\mathrm{Ar}$ method find the apparent age at 1 m .
(d) (i) Does your result seem reasonable?
(ii) Is this interpolation or extrapolation?

Question 8

Go back to the questions at the top of the first page, comment with respect to:

1) Are the ages of millions of years accurate when it comes to radiometric dating of rocks?
2) Are there any assumptions made in the dating methods?
3) Do different methods give similar/the same dates of the rocks?
4) When ages of rocks are given, are we measuring time?

REFERENCES

http://www.icr.org/rate/ Go to the bottom of the page, and click on the free download 2.8MB PDF, pages 153159.
-Scientists involved Dr. Steven A. Austin, Geologist, Institute for Creation Research, California • Dr. John R. Baumgardner, Geophysicist, Institute for Creation Research, California1 • Dr. Steven W. Boyd, Hebraist, The Master's College, California2 • Dr. Eugene F. Chaffin, Physicist, Bob Jones University, South Carolina3 • Dr. Donald B. DeYoung, Physicist, Grace College and Seminary, Indiana4 • Dr. D. Russell Humphreys, Physicist, Institute for Creation Research, California5 • Dr. Andrew A. Snelling, Geologist, Institute for Creation Research, California6 • Dr. Larry Vardiman, Atmospheric Scientist, Institute for Creation Research, California

https://www.youtube.com/watch?v=z11BdLVyzzo

Interesting relevant parts to watch are $30-31 \mathrm{~min}$ and $39-39.5$ minute mark for assumptions about the initial conditions Relevant to our assignment are the 47.5 min to the 49 minute mark.

