DATING OF ROCKS A PRACTICAL INVESTIGATION

Are the ages of millions of years accurate when it comes to radiometric dating of rocks?

Are there any assumptions made in the dating methods?

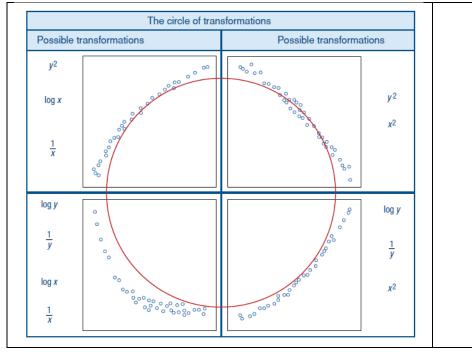
Do different methods give similar/the same dates of the rocks?

When ages of rocks are given, are we measuring time?

Distance (m) from	Apparent age of rock	
Granite boundary	using K-Ar dating method	
	(m.y.)	
90	70	
400	450	
900	500	
1200	800	
2000	1000	
3000	1050	
4000	1100	

Give answers, correct to <u>3 significant figures</u> unless otherwise stated.

Question 1 State the response variable and the explanatory variable (note, we are going to predict the apparent age from the distance).


(Question 2 Construct a scatter	nlot for distance	against annarent	age and hence n	erform scatternlot analysis
<u>ر</u>	Zucstion 2 Construct a scatter	pior, for distance	agamsi apparent i	age and hence p	chorn scale plot analysis

	I .	-	11	-	-	-	•
Sketch Scatterplot							
(Label axes with							
variable names and							
units)							
Direction							
(Key words:							
association, variable							
names)							
Outliers							
Form – by							
observation							
Form – by residual	Residual plot			Interp	pretation of resid	lual plot	
plot							

Strength State r = This means	
Coefficient of determination State $r^2 = _$ This means $_$ % of RV (variable name) can be explained by EV (variable name)	
Least-square regression line in correct variable name	
Interpret a (y- intercept)	
Interpret b slope coefficient	
Are the reports for a , b , r and r ² reliable? Why/Why not? (check outliers and form)	

Possible transformation and model name

Question 3 Compare the original scatterplot to the circle of transformation, state all the possible transformations.

Question 4 Perform and analyse each transformation

riginal data		Transformed of	data – Log x Transforma	ation
Distance (m) from Granite	Apparent age of rock using K-Ar	Distance	Log (distance)	Apparent age (m.y.)
boundary	method (m.y.)	90		70
90	70	400		450
400	450	900		500
900	500	1200		800
1200	800	2000		1000
2000	1000	3000		1050
3000	1050	4000		1100
4000	1100	-000		1100

Transformed scatterplot	Transformed scatterplot and Residual plot	Interpretation of residual plot
Residual plot		
Strength State r = This means		
Coefficient of determination State $r^2 = _$ This means $_$ % of RV (variable name) can be explained by EV (variable name)		
Least-square regression line in correct variable name		
Interpret a (y- intercept)		
Interpret b slope coefficient		
Are the reports for a , b , r and r ² reliable?		
Is this model better?		

Question 5 Another method was used to determine the apparent age of the rock (Rb-Sr) and the measurements given.

Driginal data		Transformed of	data – Log x Transform	ation
Distance from Granite	Apparent age of rock using Rb-	Distance	Log (distance)	Apparent age (m.y.)
boundary	Sr method (m.y)	7		190
7	190	15		300
15	300	90		550
90	550	400		820
400	820	900		900
900	900	1200		1050
1200	1050	2000		1100
2000	1100	3000		1150
3000	1150			

Transformed	Transformed scatterplot and Residual plot	Interpretation of residual plot
scatterplot		
Residual plot		
Strength State r = This means		
Coefficient of determination State $r^2 = _$ This means $\{\%}$ of RV (variable name) can be explained by EV (variable name)		
Least-square regression line in correct variable name		
Interpret a (y- intercept)		
Interpret b slope coefficient		
Are the reports for a , b , r and r ² reliable?		

Question 6

(a) Given that the apparent age at distance 0m is dated at 54 m.y. comment on the accuracy of the y-intercept. (Use the data/information from question 5)

(b) Comment on the accuracy of the two different methods of dating (K-Ar with Rb-Sr) by comparing the dates they give for the similar distances

Question 7

(a) Using your transformed equation for the K-Ar method find the apparent age at 100 m.

- (b) (i) Does your result seem reasonable? Why/Why not?
- (ii) Is this interpolation or extrapolation?
- (c) Using your transformed equation for the K-Ar method find the apparent age at 1m.
- (d) (i) Does your result seem reasonable?
- (ii) Is this interpolation or extrapolation?

Question 8

Go back to the questions at the top of the first page, comment with respect to:

- 1) Are the ages of millions of years accurate when it comes to radiometric dating of rocks?
- 2) Are there any assumptions made in the dating methods?

- 3) Do different methods give similar/the same dates of the rocks?
- 4) When ages of rocks are given, are we measuring time?

REFERENCES

<u>http://www.icr.org/rate/</u> Go to the bottom of the page, and click on the free download 2.8MB PDF, pages 153-159.

•Scientists involved Dr. Steven A. Austin, Geologist, Institute for Creation Research, California • Dr. John R. Baumgardner, Geophysicist, Institute for Creation Research, California1 • Dr. Steven W. Boyd, Hebraist, The Master's College, California2 • Dr. Eugene F. Chaffin, Physicist, Bob Jones University, South Carolina3 • Dr. Donald B. DeYoung, Physicist, Grace College and Seminary, Indiana4 • Dr. D. Russell Humphreys, Physicist, Institute for Creation Research, California5 • Dr. Andrew A. Snelling, Geologist, Institute for Creation Research, California6 • Dr. Larry Vardiman, Atmospheric Scientist, Institute for Creation Research, California

https://www.youtube.com/watch?v=z11BdLVyzzo

Interesting relevant parts to watch are 30-31 min and 39-39.5 minute mark for assumptions about the initial conditions Relevant to our assignment are the 47.5 min to the 49 minute mark.